International Conference on Topics in Heavy Ion Collisions

Montreal, 25-28 June 2003

Chiral Condensate Dynamics

Jørgen Randrup, LBNL, Berkeley

[UrQMD: 60 GeV/N Au + 60 GeV/N Au]

Central rapidity region:

- * Highly **excited** strongly interacting matter
- * Rapid **expansion** (primarily longitudinally)

Topics in Heavy Ion Collisions, Montreal 25-28 June 2003

$\text{QCD} \Rightarrow \text{Chiral Condensate}$

$$q=\left(egin{array}{c} u \ d \end{array}
ight): \;\; \mathcal{L}_{QCD} \; = \; ar{q}(i\gamma^{\mu}D_{\mu}-m)q \; - \; rac{1}{4}F^{lpha}_{\mu
u}F^{\mu
u}_{lpha}$$

The QCD vacuum is a condensate of quark-antiquark pairs:

$$\langle \bar{q}q \rangle \equiv \langle u^{\dagger}\gamma^{0}u + d^{\dagger}\gamma^{0}d \rangle \neq 0$$

[T. Waas, R. Brockmann and W. Weise: Phys. Lett. B405 (1997) 215]

Hot

$$\mu_{\pi}^2 < 0$$

Disoriented chiral condensates?
$$\langle ar{q} au \gamma_5 q
angle \,
eq \, 0$$

$$\mu_{\pi}(t)$$

"Emergence of coherent long-wavelength oscillations after a quench"

[K. Rajagopal & F. Wilczek: Nucl. Phys. B404 (1993) 577]

$$\Box(\mathbf{r},t) = \left(\Box, \overrightarrow{\Box}\right): \qquad L = \Box d^{3}\mathbf{r}dt \left[\frac{1}{2}\partial^{i}\Box\partial_{i}\Box\Box \Box \frac{1}{4}\Box(\Box\Box\Box v^{2})^{2} + H\Box\right]$$
Eq of motion for pion field
$$\frac{d^{2}}{dt^{2}}\Box_{k}(t) = \Box_{k}^{2}(t)\Box_{k}(t) = \left[k^{2} + \Box_{\Box}^{2}(t)\right]\Box_{k}(t)$$
Effective pion mass
$$\Box_{\Box}^{2}(t) = \Box \Box\Box^{2}\Box(t)\Box v^{2}$$

How to analyze a dynamical chiral field?

Will a quench occur?

Emulate a D-dimensional Bjorken scaling expansion of a hot uniform system

$$\left[\partial_t^2 \Box \Box + \Box (\Box \circ \Box \Box v^2)\right] \Box_{\Box} - He_{\Box} = \Box \frac{D}{t} \partial_t \Box_{\Box}$$

Supercriticality is NOT likely to occur!

Chiral Condensate Dynamics

- Supercritical fields?
 - The early expansion is predominantly longitudinal $\Rightarrow \mu_{\pi} > 0$
- Disoriented chiral condensates?

Disoriented Chiral Condensates?

The environment is hot: O(4) symmetry is favored

The environment cools: O(4) symmetry disfavored

The order parameter grows in a disoriented direction

Isospin-<u>directed</u> field oscillations

Neutral pion fraction: very idealized

Neutral pion fraction :
$$f = \frac{n_0}{n_- + n_0 + n_+} = \cos^2 \theta$$

[AA Amsden & MG Ryskin: Phys Lett B266 (1991) 482]

$$P(f)df = d\cos\theta \implies P(f) = \frac{d\cos\theta}{df} = \left(\frac{df}{d\cos\theta}\right)^{-1} = (2\cos\theta)^{-1} = \frac{1}{2\sqrt{f}}$$

Topics in Heavy Ion Collisions, Montreal 25-28 June 2003

Neutral pion fraction: less idealized

The chiral dynamics affects only the <u>soft</u> pion modes!

 $\square^0 \square > 2 \square$ cannot be cut experimentally!

Experimental searches have found no anomaly in $P(f_{\square})$:

MiniMax Collababoration: PRD55 (1997)

WA98 Collaboration: PLB420 (1998)

Chiral Condensate Dynamics

- Supercritical fields?
 - The early expansion is predominantly longitudinal $\Rightarrow \mu_{\pi} > 0$
- Disoriented chiral condensates?
- Measuring the *soft* neutral pion fraction is impractical: $\pi^0 o 2\gamma$
- Chiral antenna?

Time-dependent chiral environment

Topics in Heavy Ion Collisions, Montreal 25-28 June 2003

Chiral condensate dynamics: Non-equilibrium relaxation

The effective potential evolves from **hot** to cold form, bringing the condensate out of equilibrium:

Topics in Heavy Ion Collisions, Montreal 25-28 June 2003

Frequency modulation => pair creation

$$\square^{2}(t) \square \square[\square(t)^{2}\square v^{2}] : \square^{2}(t) = k^{2} + \square^{2}(t)$$

Mean particle number: vacuum fluctuations help

Number fluctuations are enhanced

$$\square_n^2 = \square n^2 \square \square \square n^2 : \begin{cases} n(0) = 0 : \square_n^2(t) = 2 \square n(t) \square \overline{n}(t) \square \\ n(0) << 1 : \square_n^2(t) \square X(t)^2 \square n(0) + \frac{1}{2} \square \frac{1}{2} \end{cases}$$

The number of quanta changes by *two* at a time!

$$H(t) = \frac{1}{2}p^2 + \frac{1}{2}D^2(t)q^2$$

$$H(t) = \frac{1}{2}p^{2} + \frac{1}{2}D^{2}(t)q^{2}$$

$$\begin{cases} q = \frac{1}{\sqrt{2D_{0}}}[a + a^{+}] \\ p = Di\sqrt{\frac{D_{0}}{2}}[a D a^{+}] \end{cases}$$

$$H(t) = \frac{1}{2} \square_{+}(t) \left[aa^{+} + a^{+}a \right] + \frac{1}{2} \square_{\square}(t) \left[a^{2} + \left(a^{+} \right)^{2} \right] \qquad \square_{\pm}(t) = \left[\square^{2}(t) \pm \square_{0}^{2} \right] / 2 \square_{0}^{2}$$

In a wave mechanical picture, this is a direct consequence of the reflection symmetry, which conserves the wave function's parity:

An even wave function will remain even and an odd wave function will remain odd

General character of the mass evolution

Topics in Heavy Ion Collisions, Montreal 25-28 June 2003

Fluctuations in the number of soft pions

Factorial moments of the multiplicity distribution:

$$M_m \equiv [N(N \square 1) \cdots (N \square m + 1)]$$

-- are enhanced by the time modulation

Linear [] model simulations for a stretching cylinder:

[TC Petersen & JR: PRC61 (2000)]

Comparison with HIJING & UrQMD:

[M Bleicher et al: PRC62 (2000)]

Chiral antenna

Soft charge-conjugate back-to-back pion pairs

Relaxation dynamics of the chiral order parameter

[J. Randrup, Physical Review C63 (2001) 061901(R); C65 (2002) 054906]

The rapid change of V leads to non-equilibrium relaxation of □

The pionic degrees of freedom see an undulating environment

Emission of soft back-to-back charge-conjugate pion pairs

Correlations among the soft pions

The dynamical change of the effetive mass creates back-to-back pairs of soft charge-conjugate pions:

Chiral Antenna

The antenna signal is sensitive to the properties of interest, such as the initial degree of chiral symmetry restoration and the subsequent rate of expansion/cooling. So, if identified, it may be a useful probe of these features.

> But the calculations should not be taken at face value, as they are subject to a number of caveats:

Signal strength: additional background?

L∏M underpredicts the pion multiplicity => Correlation signal is reduced

Competing mechanisms: Meson decays?

$$K_s^0(500) \to 2\pi$$
 $\rho(770) \to 2\pi$ $\omega(780) \to 3\pi$

$$\rho(770) \rightarrow 2\pi$$

$$\omega(780) \rightarrow 3\pi$$

just above threshold well above threshold not back-to-back

Signal degradation: collisions?

Baked Alaska (Bjorken): Signal pions are late & slow, so don't collide [Input from transport models needed!]

Linear ∏ model is inadequate?

Chiral condensate dynamics

Novel phenomena:

Observational consequences:

Status:

Supercritical strong field?

Spontaneous pion pair creation

Isospin-directed chiral condensates?

Anomalous distributions of neutral \prod (and K) fractions

Parametric amplification?

Enhanced fluctuations and correlations

